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Abstract

The mixture transition distribution (MTD) model was introduced by Raftery (1985)
as a parsimonious model for high-order Markov chains. It is flexible, can represent a
wide range of dependence patterns, can be physically motivated, fits data well, and
appears to be a discrete-valued analogue for the class of autoregressive time series
models. However, estimation has presented difficulties because the parameter space is
highly nonconvex, being defined by a large number of nonlinear constraints.

Here we propose an efficient computational algorithm for maximum likelihood esti-
mation which is based on a way of reducing the large number of constraints. This also
allows more structured versions of the model, for example those involving structural

zeros, to be fit quite easily. A way of fitting the model using GLIM is also discussed.
The algorithm is applied to a sequence of wind directions, and also to two sequences

of DNA bases from introns from genes of the mouse. In each case, the MTD model fits
better than the conventional Markov chain model.

1 Introduction

There are many examples in which we would like to fit high-order Markovian models to dis-

crete data. However, in the conventional parametrisation of such processes the number of pa-

rameters increases geometrically with the order, so that parsimony is effectively lost. In this
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paper, we describe some computational algorithms for fitting a parsimonious autoregressive-

like Markov model known as the Mixture Transition Distribution (MTD) model, and we

illustrate their use with some examples.

The MTD model was introduced by Raftery (1985a,b) and is defined as follows. Let

{Xt : t = 0, 1,...) be a time homogeneous lth order Markov chain on a finite set of m states

(here labelled 1,2,... ,m), and let the transition probabilities be
p(iojii,... ,i1 ) = P(Xt+ = o= i,...,Xt = it), t = 0,1 (1)

There are (m - 1) m' independent parameters in equation (1). Raftery's model provides, for

1 > 1, a useful parameter reduction in (1) by supposing that

p(io Iii,... ,i t) L Ajq(iolij), (2)
j=1

where Q = {q(i I j)} is a column stochastic matrix satisfying

q(iIj) > 0 and E q(rIj) 1,j1,...,m, (3)
r=1

and

A, +--. + A= 1. (4)

Note that the number of independent parameters is now m(m - 1) + I - 1, increasing

only linearly in 1. For example, when there are m = 4 states, the number of parameters for

a second-order (I = 2) chain is 13 in the MTD model as against 48 in the usual second-order

Markov chain model. To ensure that the transition probabilities are properly defined, we

also require

)j q(ioIij) > 0 for all io,..., i,. (5)
j=l

Notice that when (3), (4) and (5) are satisfied, p(io I il,..., it) < 1 for all i0, il,..., 1.

The MTD model is so called because the conditional probabilities in (2) are linear combi-

nations of contributions from the past. It is analogous to the AR(l) model in that one extra

parameter is added to the model for each extra lag and that the lagged bivariate distribu-

tions satisfy a system of matrix equations similar to the Yule-Walker equations. In some
situations it has a direct physical interpretation in terms of the probability of returning to

past states, or !4atcs close to them.

We have found the MTD model useful in practice, but it is not easily fitted because of

the non-linear nature of (2) and the constraints in (5). From an algorithmic point of view,
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there are really two special cases of the MTD model, these being determined by what is

assumed (in addition to (3) and (4)) about the {A}. With the positivity assumption

Ai _ 0, i = 1 l, (6)

the inequality in (5) is automatically satisfied. The examples given in Raftery (1985a)

satisfied (6), but several of the data sets we have analysed do not. One of these is described

later in the paper. Without this positivity assumption, equation (5) comes into play in a

cr::-:zi way, and computationaily it becomes very important to be able to reduce the large

number of constraints that are operating there. In section 2 we show how this can be done

and in section 3 we give several examples.

2 Parameter Estimation

2.1 Reducing the Number of Constraints

We saw in section 1 that the general MTD model must satisfy the m (m - 1) copstraints

in (5). For example, in the four-state second-order case, i.e. m = 4 and 1 = 2, the number

of constraints is 48, so that the resulting constrained numerical optimization problem is

computationally demanding. The following result, which reduces the effective number of

constraints in (5) to m, is at the heart of our fitting algorithm:

Proposition I Let T = Ei:,>o A,, and define q_.(i) = mini<j<,, q(iIj) and q+(i) -

maxl<j<,. q(i I j). Then E.=, A q(ili,) 0 for all i, i,..., il if and only if

Tq-.(i) + (1 - T)q+(i) 0 for all i. (7)

Proof If (7) holds, then

E'=, Aj q(i I ij) = Ej:,_o q(i I ij) + j:,<o Aj q(i I ij)
, A, q_(i) + Ej:A,<o Ai q+(i)

= Tq_(i) + (1- T)q+(i)

> 0.

Conversely, assume that q_(i)= q(i Ipo) and q+(i)= q(i I p). Then

Tq-_(i) + (1 - T)q+(i) = ',>o Aq(i Ipo)

+E :A,<0 A q(i p,)
> 0.
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2.2 Maximum Likelihood Estimation

The parameters Q and { A} can be fitted by maximum likelihood by maximising the log-

likelihood

logL = n(io, i,...,it) logp(io i,...,it), (8)

where n(i0, i1,..., ii) is the number of times the sequence it 1 it-, io occurs in the

data, p(io I i,...,i) is given by (2), and the sum is over ail io, i i,.. .,itwith n(io, i1 , ... , i1 ) >

0. The maximisation is subject to the constraints (3), (4) and (7).

While there are several numerical approaches that might be taken to this problem, we

found that direct maximisation of (8) was effective. We used the sequential quadratic pro-

gramming algorithm implemented as EO4UCF in Mark 13 of NAG (Numerical Algorithms

Group, 1988). Although derivatives of the objective function and the constraint functions

may be calculated, we found that approximating these by finite differences was effective.

One troublesome part of the algorithm involves the storage and recovery of the counts

n(io, i it). For models with high values of I or m, the number m1+l of potential patterns

can be extremely large. We proceeded by labelling a pattern i = io, ir,..., i1 by the number

+i = 1 + (i, - 1)mrrt 1+l-.

j=O

If the number of possible patterns was sufficiently small, we stored the whole (now one-

dimensional) array of counts. On the other hand, the maximum number N, say, of patterns

that can be observed in the data is a little less than the length of the observed time series,

so in cases where mI+l is very large compared to N, we calculated and stored the counts

using a simple hashing algorithm with a vector of length approximately N.

The types of data we have analysed have led to several useful additional features of the

programs, namely:

1. The positive A model satisfying (6) and the more general model satisfying (7) may be

fitted separately.

2. Structural zeroes in the Q matrix may be handled directly. Example 3.2 in Raftery

(1985a) is of this type.

3. Predetermined A values may also be set to zero, corresponding to the omission of those

terms.
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4. Fixed or random sttrts for the parameters in the iterative scheme are allowed. In the

first instance, Q is estimated by the usual first-order transition matrix, and the A, are

equal. In the second instance, random Q and Ai are used, subject to (3) and (4). This

facility is particularly useful in the iterative algorithm for determining whether a local

or potentially global maximum has been reached. While we have no formal proof that

a unique maximum exists, numerical evidence with some 20 data sets suggests that it

does. A more formal assessment of this might follow Finch et al. (1989).

2.3 Minimum X2 estimation

As an alternative to maximum likelihood, we have also used minimum x2 estimation. The

aim is to find Q and {,i} that minimise

X2 : y .(n(io,...,ii) -e(io .. . . ,)
e (i0, . .. ,it

where
e (io,.. . , i) n n(+ ,i 1,. . . ,i) p(1 i , .. i)

and + denotes summation over that index. The sum is over all n(io, il,...,i,) for which

n(+, 1 ,. . ., i) > 0, and the constraints in (3), (4) and (7) apply. This is a useful alternative,

since the fitted counts e from the optimisation are natural candidates zz measures of goodness

of fit of the model. Kwok (1988) and Li and Kwok (1989) have shown that in some special

cases of the MTD model, the minimum X2 estimator has lower bias than the maximum

likelihood estimator but about the same variance, and hence lower overall mean squared

error.

The asymptotic theory of X 2 when the parameters have been estimated by Maximum

Likelihood is given in Billingsley (1961), where it is shown that X' has approximately a

X2 distribution when the chain really is of order 1. The asymptotic behavior of X 2 in the

present context is the same.

We also experimented with different numerical algorithms for this problem, essentially

based on knowledge of derivatives for the constraint functions. Once more the direct ap-

proach seems the easiest, using NAG algorithm E04UCF again.

Further details of the programs, and copies of the code, may be obtained from the authors

upon request.
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2.4 GLIM analysis of two-state models

When m = 2, the MTD model may be fitted using an iterative procedure in GLIM (Baker,

1986). Focus for the moment on the case 1 = 2, and write Ai = A, A2 = 1A- . The

log-likelihood (8) may be written

log/ , = E ( n(i,il,,i2) 109 P(Iil,,i2) .(9.)

For each il, i2 , the inner term in (9) is (essentially) a binomial log-likelihood for n(+, il, i2 )

trials and success probability p(l I ii, Z2 ), where

q(1 11) Z1= 1,i2 = 1
(l I J Aq(l I1) + (I - A)q(l 12) il = 1,i2 = 2 (10)

j,(1) - A)q(l 1i) + Aq(l 12) il = 2,i 2 = I

q(1 12) il = 2,i 2 = 2.

If A is known, then (10) shows that the p(1 fil,i 2 ) are linear in the parameters q(1 11)

and q(l 12), q(1 1 1) being the coefficient of the covariate x T = (1, A, 1 - A, 0) and q(1 12) the

coefficient of the covariate xT = (0,1 - A, A, 1). Thus q(1 11) and q(1 12) (and so Q) may be

estimated using binomial error, identity link, no intercept and covariates x, and x 2.

On the other hand, if q(1 11) and q(l 12) are assumed known, then (10) shows that

p(1 il, i2) is linear inA ; A is the coefficient of the covariate x3 = (0, q(1 11)-q(1 12), q(1 12)-

q(1 I 1),0) and the offset is x4 = (q(1I1),q(1 12), q(1[1),q(1 2)). Thus A may be estimated

using binomial error, identity link, no intercept, covariate x3, and offset x 4. This leads to a

simple recursive scheme for estimating the parameters, reminiscent of the iterative algorithms

used in survival analysis; cf. Aitken et al. (1989), Chapter 6.

The generalisation to 1 > 2 is almost immediate from the form of (10). The number of

covariates for the first stage remains 2, the elements of x, being replaced by Ej:i,=l Aj. For

the second stage the number of covariates is 1 - 1. It does not, however, seem to be simple

to generalise this scheme to the case m > 2.

2.5 Model comparison

In order to compare the rival, non-nested, models in the examples that follow, we would

ideally like to compute the posterior probability of each model under a range of plausible

prior distributions for the parameters. The use of successive significance tests seems less

satisfactory because many of the comparisons involve non-nested models and because the
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use of multiple tests make the properties of the overall procedure hard to assess. We do

not adopt information criteria for the selection of a single model, because conditioning on a
single selected model ignores model uncertainty and so overstates our knowledge.

Here we use the approximate result that if we are comparing two models, M0 and M 1,

then the Bayes factor, or ratio of posterior to prior odds, B01, for M0 against M1 satisfies

- 2 log B01 = BICo - BIC. (11)

In (11), BICi = -2 log Li + ki logn, where Li is the maximized likelihood and k; is the

number of independent parameters in the model Mi(i = 0, 1). Although this has not been

formally proved for the MTD model, it has been established for independent exponential

family observations by Schwarz (1978), for the usual Markov chain by Katz (1981) and for

log-linear models of contingency tables by Raftery (1986a). The MTD model appears to

satisfy regularity conditions that would permit the adaptation to it of proofs for other cases.

If (11) is always some baseline model such as the independence model and (11) is calculated

for each model of interest M 1, then the resulting Bayes factors readily yield the posterior

probability of each of the models of interest (Raftery, 1988). The rules of thumb of Jeffreys

(1961, Appendix B) suggest that such a comparison should not be regarded as decisive unless

the difference in BIC values is at least about 10.

Model comparisons based on posterior probabilities can yield results different from those

based on significance tests. This is especially so with large samples, including some that

we analyse here. In such cases significance tests at fixed significance levels often reject null

hypotheses more easily; an example with n - 110,000 was discussed by Raftery (1986b).

This is related to the "conflict between significance and P values" discussed by Berger and

Sellke (1987). Alternatively, basing model comparisons on Bayes factors may be viewed as

an automatic, decision-theoretic, way of setting significance levels so as to balance power

and significance.

Our code produces Pearson residuals which can be used to suggest ways in which the

model could be improved. New models suggested by such a process can be compared with

the other models under consideration also using approximate Bayes factors.

3 Wind direction data

Raftery et al. (1982) and Haslett and Raftery (1989) describe a data set that includes hourly

observations of wind directions at a meteorological station at Roche's Point, Ireland. The
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data that we analyse here began at 1 am on January 1, 1961 and ran fnr almost 9 years.

There are 77,155 observations in all. The original data were recorded as 0 for no wind, and

then in 10 degree units from due North, for a total of 37 states.

One aim here is to predict wind speeds and directions so as to control the wind turbine

generators making up a wind farm, and to manage the electric power supply. Wind turbines

should be oriented in such a way as to derive the most energy from the wind, so that their

current best orientation is a function of future as well as current wind direction. Predicting

output from a variable energy source such as wind is important so that the need for power

from other, more stable, sources such as oil can be anticipated.

Figure 1 provides a histogram of the distribution of wind directions for all nine years

combined, together with separate histograms for each of the 8 complete years in the data

set. Broadly speaking, these annual histograms are rather similar and show natural modes in

the data that are preserved from year to year. Based on these results, we chose to recode the

data into five categories: 0, 6-14, 15-23, 24-32, and 33-5; these are labelled 1 to 5 respectively

in what follows.

Insert Figure 1 about here

As might h-, - anticipat,-A. there ar,- some inhomogeneities in the distribution of

wind directions which are revealed when the data are analysed in separate months. See

Figure 2.

Insert Figure 2 about here

These distributions are rather similar for the months of November through April. We

therefore chose the months November through April as a period in which wind directions

might be modelled by a stationary MTD model. The data analyzed below come from the

period November 1961 to April 1962, providing a total of 4344 consecutive hourly observa-

tions.

Insert Table 1 about here

Table 1 gives the BIC values for the full Markov model, and the MTD model. The order

is estimated to be 7. The estimated parameters are A1 = 0.591, A2 = .237, A = .076, A4 =

.018, A5 
= .024, A6 = .024, A7 = .031, while
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.65 .01 .01 .01 .01

.09 .95 .01 .00 .03
= .14 .02 .92 .04 .00

.05 .00 .06 .92 .04

.08 .03 .00 .03 .91

The estimated j's are positive, indicate that the most recent observations are the most

important, and that the current observation tends to be close to the immediately preceding

ones, as we would expect. The Q matrix indicates the process to be smooth, with the

probability of staying in the same state being 0.91 or greater whenever there is any wind,

and the probability of the direction changing by more than one state being very small.

We note that A7 is larger than A4, A5 and A6 , probably due to the fact that the A7 term

is capturing the small residual dependence on Xt-s, Xt-,..., as well as the dependence on

Xt- 7 itself. This suggested that we fit another MTD(7) model, with the constraint that

A4 = A = A6 = 0. As we discussed in section 2.2, this is easy to do using our algorithm.

The resulting BIC value was 4530.4, making this quite clearly the best model considered.

The Q matrix "-as almost unchanged, while A = .598, A2 = .245, A3  .100, A7 = .057. This

is not very difforent from the full MTD(7) model, but it seems to summarize the dependence

in a more parsimonious way.

4 The analysis of intron sequences

The area of biomolecular sequence comparison has provided statisticians with a wealth of
novel problems. As an example, descriptive statistics on DNA composition have proved useful

in the search for coding regions and introns, the statistical assessment of sequence similarity,

and the analysis of repeated motifs that may be of biological significance. Similarly, statistical

analysis of protein sequences of known three-dimensional structure haz been used to infer

potential folding patterns of other proteins. It is not our purpose here to describe these

areas in any detail; rather, we refer the reader to the recent review article by Curnow and

Kirkwood (1989) and the books edited by Waterman (1988) and Doolittle (1990) for good

introductions to this important field. In this section, we will focus on just one example from

the area of DNA sequence analysis to which the MTD model might be applied.

The statistical significance of repeated patterns in a DNA sequence must, of course, be

measured against the bLakground qtnchastic structure of the sequence itself. Among possible

models for this structure are Markov chains, which might describe the DNA sequence in
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t,:rms of its nucleotide composition (that is, as a string of letters from a four-letter alphabet,

{A, C, G, T J). There are several other alphabets of biological interest such as the purine-

pyrirnidine alphabet in which each base in the sequence is coded as either purine ({.A, G)

or pyrimidine ({C, T }). For example, Blaisdell (1983) reported that, relative to a model of

independent bases, non-coding sequences (such as introns) generally contain a shortage of

runs of length 1 and 2 of purines and pyrimidines, and an excess of long runs of them; see

also Karlin, Ost and Blaisdell (1988). In this section, we describe an exploratory analysis of

two different DNA sequences from introns in certain mouse genes.

4.1 The mouse T-cell receptor a/6 locus

The first example is an analysis of part of the mouse T-cell receptor a/rb locus (Wilson Ct al.,

1991; Koop et al., 11991). This region is 94,647 bases in length. It comprises over 50 introns

and 50 exons; the exons comprise just 6% of the sequence. The particular sequence we have

analyzed is the intron prior to joining gene segment J50 (Koop et al., 1991). It starts 5' to

exon 1 of V5, and ends three bases before the recombination signal 5' to J50. The sequence

is 5,778 bases in length.

A preliminary analysis shows that the sequence is clearly first-order when analyzed in the

four-letter alphabet {A,G,C,T}; see Table 2. The MTD model provides no improvement

on this fit. The estimated transition matrix Q is

last base
A G C T

A .31 .29 .32 .18

next G .27 .27 .04 .29
base C .20 .22 .27 .26

T .22 .21 .37 .27

Insert Table 2 about here

Recall that a Markov chain with transition matrix Q is (strongly) lumpable with respect

to a partition P1 ,. . . , P, of the state space if, and only if, for 1 < 1, j' < r, E)~p, quk has the

same value for each k E P, (Kemeny and Snell, 1960). The lumpability condition ensures

that the Jumped process is also Markovian, no matter what the initial distribution of the

original process might be. An examination of the matrix Q above indicates that we might

simplify the stochastic description of this intron by lumping the states A and G into a single

state AIG that denotes purine. A formal test of this lumpability hypothesis may be found
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in Thomas and Barr (1977). The new alphabet is {A/G,C,T}. The BIC analysis of this

new sequence is presented in Table 2. As would be expected, among the fully-parametrized

Markov models a first order chain provides the most parsimonious description. Its estimated

transition matrix is
last base

A/G C T
next A/G .57 .36 .47
base G .21 .27 .26

C .22 .37 .27

However, it can be seen from Table 2 that a second order MTD model provides a better

description. In this case, A1 = 0.71, A2 = 0.29, and the estimated transition matrix Q is
last base

A/G C T
next A/G .60 .33 .44
base G .20 .28 .26

C .20 .39 .29

Finally, we analyze the purine-pyrimidine alphabet {A/G, C/T}. From the previous dis-

cussion, it seems clear that the original sequence is not lumpable with respect to the purine-

pyrimidine partition of the states. The purine-pyrimidine sequence may not be Markovian (or

even homogeneous, unless we assume that the original chain was stationary). Fitting Marko-

vian models to such data provides an exploratory approach to approximating the stochastic

structure of a complicated process by simpler ones. One might expect this more complicated

structure to be reflected in a higher estimated order of dependence in the Markovian approx-

imation. This is indeed the case here, as the results in Table 2 verify. The purine-pyrimidine

chain is approximated by a second-order Markov chain. The MTD model offers no further

improvement in this case.

The discussion of lumpability provides an indication of the greatest extent to which the

states of the chain can be aggregated without losing important structure. Here, this seems

to be the three-state case analyzed above. Thus, in a sense, the second-order MTD model

for the three-state case provides the most parsimonious available representation of the data

within the class of Markov chain models discussed.

4.2 The mouse aA-crystallin gene

Avery (1987) examined the Markovian structure of introns from several other genes in mouse,

in order to determine whether certain shcrt DNA sequences occurred more often than would
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be expected by chance. Here we will analyse the introns frorn the mouse aA-crystallin

gene, further details of which may be found in Avery's paper. The sequence analyzed here

comprises two introns, of total length 1307 bases.

Following the style of analysis of the previous example, we see first that the sequence

of bases with dlphabet {A,C,G,T'} is clearly indicated to be of order 1; see Table 3. The

estimated transition matrix Q is given by

last base
A G C T

A .23 .23 .30 .19
next G .34 .32 .06 .30
base C .25 .27 .34 .28

T .18 .19 .30 .23

Insert Table 3 about here

Notice that this transition matrix is qualitatively rather similar to the corresponding

matrix for the T-cell receptor intron discussed in the previous section. In particular, this

sequence is also (approximately) lumpable with respect to the partition {A/G, C, T}. The

results are again consistent with the previous example, in that among the fully-parametrized

Markov models, the first order model provides the best description. However, a more parsi-

monious description is provided by an MTD(2) model in which A1 = 2.46, A2 = -1.46, and

the estimated transition matrix Q is

last base
AIG C T

next AIG .52 .43 .49
base G .27 .32 .29

C .21 .25 .22

Note that in this example the likelihood is maximized by some negative values of the A,.

The constraints are maintained by using the method outlined in Proposition 1.

Finally, the analysis of the collapsed chain in its purine-pyrimidine alphabet is given in

Table 3. The odds for the data being generated by a second-order MTD model as against

a first-order Markov chain are about 2:1, by (11). This does provide some evidence for the

chain being of order two, although in the words of Jeffreys (1961) it is "not worth more

than a bare mention". (The standard likelihood ratio test statistic is 8.7 with one degree of
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freedom, and the corresponding P-value from the asymptotic X2 distribution is about 0.003.

Thus the approximate Bayes factor and the approximate P-value point in the same direction

but, as usual, the P-value suggests stronger evidence for the larger model.) The parameter

estimates from the GLIM algorithm described in section 2.4 are identical, and the minimum
X2 estimates are essentially the same.

In this example, the structure of the purine-pyrimidine sequence is captured by the MTD

model, rather than by the fully parametrized Markov model that was required for the earlier

intron sequence. The parameters are A1 = 2.19, A2 = -1.19 and the estimated transition

matrix Q is

last base

AIG CIT
next AIG .52 .45
base G .48 .55

4.3 Comments

In these examples the emphasis is on model fitting to find (or approximate) structure, rather

than for prediction. We have seen that the MTD(2) model provides a good description of

the two intron sequences when they are coded in the {A/G,C,T} alphabet. Some other

sequence analysis examples in which the MTD model has been applied appear in Tavar6

and Giddings (1988). While Markov models are a useful first step in this context, their

validity is often questionable because of possible inhomogeneities in the sequence. This

inhomogeneity is particularly pronounced in coding regions (exons), where it is well known

that the three codon positions exhibit markedly different behavior. To analyse such regions,

more sophisticated non-homogeneous Markov models may be required. Some of these are

described, for example, by Tavar6 and Song (1989) and Watterson (1991).

5 Discussion

Various generalisations of the MTD model have been proposed. Raftery (1985a,b) proposed

ways of modelling the case where m = oo, such as when the observations are counts. Adke

and Deshmukh (1988) showed that asymptotic properties valid when m is finite also apply

when m = oc. It seems that our estimation method will work in that case also, provided

that the (now doubly infinite) matrix Q is modelled parametrically. If m = oo and

liminfq(ilj) =O Vj, (12)
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then the constraints (5) are equivalent to the positivity assumption (6), and the computa-

tional problem is greatly simplified.

Mehran (1989) considered the infinite lag MTD model, 1 = oo, where \j is a parametric

function of j. Our method seems applicable in this case also, although calculating the

likelihood, or the fitted values for minimum X2 estimation, seems difficult. It may be possible

to model discrete-valued time series with the long-memory property using this approach, by

setting the Aj equal to the 7r-weights for the fractionally-differenced ARIMA (p, d, q) process.

Various continuous-valued environmental time series such as wind speeds are of this kind

(Haslett and Raftery, 1989), and it seems reasonable to suppose that some discrete-valued

time series might have this property also.

Martin and Raftery (1987) and Adke and Deshmukh (1988) pointed out that the MTD

model remains well-defined for arbitrary state spaces, which need not be finite, countable or

even discrete. Equations (1) and (2) remain valid if p and q are interpreted as conditional
densities, where q will usually have some parametric form. Le, Martin and Raftery (1990)

have shown that this provides a framework for modelling bursts, outliers and flat stretches in

continuous-valued time series, and also models time series that are well fitted by conventional

Gaussian ARMA models. If condition (12) holds, then so does the positivity assumption (6).

However, this is not always the case, even when the state space is continuous. For example,

in continuous-valued directional time series, (12) does not necessarily hold. Craig (1989) has

investigated MTD and other models for this situation, and has studied the consequences of

(12) not holding. Breckling (1989) has also studied such time series.
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Caption for Figure 1

Histograms of wind directions in Roche's Point, Ireland, 1961-1969.

Analysis by year.
Wind directions are measured in units of 100 from North. 0 indicates no wind.

Caption for Figure 2

Histograms of wind directions in Roche's Point, Ireland, 1961-1969.
Analysis by month.
Wind directions are measured in units of 100 from North. 0 indicates no wind.
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Table 1: Wind direction data from Roche's Point, Ireland1 .

Order, I Number of BIC Number of BIC
parameters, k (full model) parameters, k (MTD model)

0 4 12,716.5
1 20 5,085.7 20 5,085.7
2 100 5,198.8 21 4,646.4
3 500 8,243.3 22 4,569.5
4 2,500 24,674.7 23 4,557.5
5 - - 24 4,544.;
6 - - 25 4,539.8
7 - - 26 4,538.8
8 - - 27 4,540.8
9 - - 28 4,540.4
10 - - 29 4,545.4

n = 4,325 observations starting at position 20 in the sequence.



Table 2: Intron from mouse T-cell receptor /a locus' .

Order, 1 Number of BIC Number of BIC
parameters, k (full model) parameters, k (MTD modd)

Alphabet: A, C, G, T

0 3 15,980.1
1 12 15,549.3
2 48 15,756.9 13 15,552.4
3 192 16,828.7 14 15,561.1

Alphabet: A/G, C, T

0 2 12,042.0
1 6 11,900.1
2 18 11,939.7 7 11,885.5
3 54 12,204.7 8 11,890.2

Alphabet: A/G, CIT

0 2 8,005.6
1 4 7,881.8
2 8 7,850.5 3 7,851.4
3 16 7,878.2 4 7,856.1

n = 5,369 bases, starting at position 10 in the sequence.



Table 3: Introns from Mouse aA-crystallin gene'

Order, I Number of BIC Number of BIC
parameters, k (full model) parameters, k (MTD model)

Alphabet: A, C, G, T

0 3 3,620.8
1 12 3,559.7
2 48 3,758.8 13 3,566.1
3 192 4,542.8 14 3,572.8

Alphabet: A/G, C, T

0 2 2,739.0
1 6 2,728.7
2 18 2,786.6 7 2,722.7
3 54 2,973.2 8 2,729.4

Alphabet: A/G, CIT

0 1 1,810.9
1 2 1,792.8
2 4 1,798.1 3 1,791.3
3 8 1,813.8 4 1,797.1

Two introns, n=1302 bases, starting at position 6 in the sequence.
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Th mixture transition distribution (MTD) model was introduced by Raftery (1985'
as a par3imonious model for high-order Markov chains. It is fiexible, can represent a
wide range of dependence patterns, can be physically motivated, fits data well, and
appears to be a discrete-valued analogue for the class of autoregressive time series
models. However, estimation has presented difficulties because the parameter space is
highly nonconvex, being defined by a large number of nonlinear constraints.

Here we propose an efficient computational algorithm for maximum likelihood esti-
mation which is based on a way of reducing the large number of constraints. This also
allows more structured versions of the model, for example those involving structural
zeros, to be fit quite easily. A way of fitting the model using GLIM is also discussed.

The algorithm is applied to a sequence of wind directions, and also to two sequences
of DNA bases from introns from genes of the mouse. In each case, the MTD model fits
better than the conventional Markov chain model.


